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LIST OF SYMBOLS

(x,y,z) - cartesian coordinates

(r,0,z) - cylindrical coordinates

(R,B,0) = spherical coordinates

U(,z),V(0,z),W({,z) - axial, tangential and radial displacements at
shell mid-surface

an - axial and circumferential harmonic wavenuizTers

(n, a), (n,a),7(n. o) = transfor s of shell displacements

pi(r,,z),p 2(r,8,z) = interior and exterior pressures

w = radian frequency of vibration

= density and sound velocity of interior fluid

P2,C2 = density and sound velocity of exterior fluid

ki, i=1,2 = wavenurder in fluid, /ci

a,h,ps  = radius, thickness and density of pipe

El = Eh/(1-0 2 ). E is Young's modulus and a is
Poisson's ratio

B2  = h2/12a z

6 = Dirac delta function

en = I when n=O, and 2 otherwise

F0 = amplitude of point force located at
cylindrical coordinates (a,0,0)

PO = amplitude of point source located at

cylindrical coordinates (X0 ,0,0)

R 2= (X-Xo) 2 Y2 +Z2 -r X - 2r 0 cos(0) +

J ,J',Y ,Y',H H' = Bessel functions and their derivatives. H =J *iYn n n n n n n n

ui' i-1,2 W (k - L2)1 with Im.(Pi) > 0 to satisfy the

radiation condition

= hysteretic loss factor of shell
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INTROOUCTION

A previous report [11 has analysed the theoretical problem of far-field
sound radiation from fluid-filled pipes that are excited by point forces and
point acoustic sources. The salient points that emerge from the work are
that the frequencies at which 'peaks' appear in the sound spectra depend on
the location of the observation point, and that the far-field radiation
characteristics are understood better when wavenumber versus frequency
dispersion plots are available. In practice, however, measurements in the
far-field are not usually possible because the environment is inevitably
reverberent. It is thus necessary to average spatially the pressure
measurements, in a suitable way, to give an estimate of the radiated
acoustic power. Other responses of central interest to an experimentally
based progremme are the pressure fields near to the pipe's surface and the
acceleration response of the pipe's wall.

In Section 2, the pressure fields and the pipe's displace nts are
represented by Fourier transform, and the acoustic power in the surrounding
fluid is obtained from the stationary phase approximation to the far-field
pressure. The integral representations of the fluid pressures, pipe's dis-
placements and radiated power are evaluated by a simple numerical quadrature
scheme. In Section 3, numerical results are discussed for the case of a
water-filled steel pipe that is radiating into the surrounding air. The
numerical results are in the forn of decibel level versus frequency plots
for the responses in the individual circuriferential harmnics, n=O, I and 2,

The numerical results are better understood by inspection of wavenunter
versus frequency plots, but further numerical work is necessary. First, it
is necessary to search the literature for measurements that have been
obtained under controlled conditions, because a comparison with theoretical
estimates would be particularly valuable. Secondly, plots of acoustic
intensity vectors 161 would help to illustrate the essential physics of the
fluid-pipe system. Thirdly, the eigenvectors should help to explain the
curious maxima and minima that appear in the spectra of the responses at a
distance from the source. Forthly, the range of applicability of the
concept of matching wavenunbers of in-vacuo pipe and rigid-walled duct needs
to be investigated in some detail because it is being used increasingly to
explain certain aspects of measured data. Finally, the effect of fluid flow
on the stability, vibration and sound radiation needs to be investigated.

2. PROBLEM FORMULATION

General

An infinite circular thin-walled pipe contains and is also
surrounded by fluids of possibly differing densities and sound veloci-
ties. The displacements of the pipe's wall satisfy an eighth-order
shell theory [2 1, and the interior and exterior sound pressures satisfy
the Helmioltz wave-equation. The pipe is excited by time-harnunic
surface stresses caused by mechanical point forces or interior acoustic
sources. The time factor exp(-iwt) is omitted from all of the
equations. The geometry is shown in Figure 1.
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Pipe Displacements and Fluid Pressures

The axial, tangential and radial displacements of the pipe's wall
and the interior and exterior acoustic pressures have the following
Fourier transform representations:

U(O,z) cos(nO) U(n,a)

V(0,z) = (1/2w) Z sin(n0) exp(iz) 9(n,a) da (2.1)

WC ,z) cos(nO) W(n,)

Pl(r,0,z) = (1/27r) I cos(n0) p(i(z) ijr,n,ald (2.2)n=O e

p2(r,O,z) = (W
2P2/2w) Z cos(nO) exp(iaz)[Hn(P2 r)/U 2H'(V 2a)J

n=O

W(n,a)da (2.3)

Formulae for the transforms U(n,), V(n,a), W(n,a) and p(r,n,a)

are to be found in the Appendix.

Far-Field Acoustic Pressure

A stationary phase evaluation of the integral representation of
the exterior pressure yields the far-field pressure as

W(n,k 2cos 8)exp(-inn/2).cos(nO)

Pf(R,8, ) = -iWp 2c2.exp(ik2R)/rR. Z (2.4)
n=O sin(8)H'(ak2 sin 8)

n 2

Radiated Power

The acoustic power radiated into the exterior fluid is defined as

S= f Ipf(R,8,0)I2/p 2c21R2sin(B)d8d0 (2.5)
0 0

where the customary multiplication factor of one-half has been omitted
because the excitation is to be specified in its rns form. Substitu-
ting equation (2.4) into equation (2.5) gives, after carrying out the
integration in the 0-coordinate,

7r0(2 / I(nkcos )12/sin(8)IHn(ak2sin G)J21 d8
P 2pc 2/w) n* e n I[ 6) 8) d8 B~

0 (2.6)

When the excitation is located at z-0, the symmetry of the sound field
about 8-w/2 may be used to halve the computational time.
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Numerical Evaluation of Integrals

The integrals in equations (2.1-2.3) and (2.6) must be evaluated
numerically because closed-forT expressions are not available. Their
numerical approximation, on truncating the infinite limits in equations
(2.1-2.3) to finite values, is based upon a simple adaptive quadrature
scheme that has been used successfully to evaluate the response and
acoustic field of a point-excited plate (3].

The scheme splits the range of integration into a selected nuner
of equal intervals each of which being repeatedly halved until an
absolute or a relative convergence test is met by successive approxi-
mations to the integral in the interval - Gaussian quadrature of order
two is suitable for those cases where low accuracy is sufficient.
Vogel & Feit 141 have also used an adaptive scheme to evaluate the
vibration response of a pipe with exterior fluid loading and point
force excitation - their mesh size being controlled by the second
derivative of the integrand.

3. NUMERICAL EXAMPLES

General

Plots of wavenunber, acoustic power, acceleration and acoustic
pressure versus frequency are shown in Figures 2-9 for the particular
case of a water-filled steel pipe that is surrounded by air. The
material and geometric constants, in SI units, used in the computations
are as follows:

pipe: E=19.5E10, a=0.29, p=7700.0, h=2.54E-2, a=22.23E-2, n=O.02

water: p=1000.O, c=1500.0

air: p=1.21, c=343.0

Previous work [11 has presented plots of far-field acoustic radiation
versus frequency, for the various combinations of the fluids, air and
water, and the separate cases of point force and source excitation.

Wavenunrber Plots

Figures 2 and 3 show the real branches of the wavenumber versus
frequency plots for the circumferential harmnics n=O-2. The loading
caused by the surrounding air was neglected. The frequency range
extends to 1.4 times the 'ring' frequency of the pipe. The physical
interpretation of wavenurber-frequency plots is discussed in some
detail elsewhere [51j here, only a brief explanation of the 'cut-on'
nature of the waves is necessary.

Figure 2 contains the plots for a water-filled pipe. First, for
n-O, the branches labelled 1-4 are close to a plane fluid wave, an
axial wave in the pipe, a radial flexural wave in the pipe and a fluid
wave, respectively: the branch '0' is a wave of pure torsion.
Secondly, for n=1, the branches are the familiar beam flexural wave,
a fluid wave and a pipe torsional wave, respectively. Finally, for
n-2, the branches are the radial shell flexural wave, a fluid wave and

a torsional wave, respectively.
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Figure 3 contains the wavenurnber versus frequency plots for the separate
cases of the pipe in-vacuo, a rigid-walled waveguide of water and a
pressure release waveguide of water. These plots, when compared with
Figure 2, show the effect of the interior water on the real branches of
the dispersion relation. They are also useful if the concept of equal
wavenunber in the fluid and pipe is of value to the interpretation of
the responses of the coupled fluid-pipe system.

Airborne Acoustic Power

Figures 4-5 show the airborne acoustic power radiated from the
pipe's wall in the n=0-2 circumferential harmonics, for the separate
cases of point-source and point-force excitation. The sound power
decibel level is defined as 10.log(P) + 120.

In Figure 4, the excitation is a point source, located at the
cylindrical coordinates (2a/3,0,0), whose free-field level in the
interior fluid is 120 dB ref I micropascal at 1m. The 'peaks' in the
spectra occur at the frequencies at which wave-branches 'cut-on'. In
particular, a large jump in the acoustic power occurs at the frequency
of the n=2 harrmnic where an essentially fluid-type wave 'cuts-on',
At frequencies below the 'cut-on' frequency of the n=2 flexural nude,
the total power is dominated by the contribution of the n=O harmonic.

In Figure 5, the excitation is a radial I N point force that is
located at the cylindrical coordinates (a,0,0). Again, the peaks in
the spectra occur at frequencies at which the wave-branches 'cut-on'.
However, the jump in level at the 'cut-on' frequency of the n=2 fluid-
type wave is less severe, and the radiated power of the n=O harmonic
goes to zero at low frequencies where the n=1 harmnic is dominant.

The effect, on the power radiation, of additional damping in the
pipe's wall was investigated by increasing the hysteretic loss factor
from 0.02 to 0.10. The power levels dropped by 7 dB which indicates
a power reduction of 10.1og(n2/nL). It must be borne in mind that this
power reduction would not necessarily have been obtained for the case
of a water-filled pipe radiating into water, because the radiation loss
factor could be of the same order of magnitude as the structural loss
factor.

Radial Acceleration of Pipe's Wall

The radial acceleration of the pipe's wall in the n=0-2 harmonics
is plotted in Figures 6-7 for the case of point force excitation located
at (a,0,0). The acceleration decibel levels are defined as
20.1og(JO1) + 100.

Figure 6 gives the drive point acceleration. It is evident that
the maximum responses occur at the 'cut-on' frequencies of the modes.
The plots, on adjustment to velocity response, are of similar appearance
to the power radiation plots of Figure 5.

Figure 7 gives the acceleration response at an axial distance of
4m from the radial drive forme. The responses are now quite complex at
the higher frequencies, presumably due to nodal interference effects
and the changing nature of the wave-branches with frequency [5]. It
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is difficult to interpret these plots without the availability of the

eigenvectors.

Acoustic Pressures on Pipe's SurFaces

Figures 8-9 show the acoustic pressures on the pipe's outer and
inner surfaces, respectively. The excitation is a radial point force
and the pressures are computed at an axial distance of 4m from the
force, the decibel level being 20.log(Jpl) + 120.

The plots of the pressure on the outside of the pipe, Figure 8,
are of similar appearance to the transfer acceleration, Figure 7. At
the higher frequencies, the maxima and minime in the plots of the
inside pressure, Figure 9, do not coincide in frequency with those of
the outer pressure plots. Indeed, it is curious that many maxima and
minima are reversed in the two figures.
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APPE.NDIX

The Spectral Displacenmnts I I

The excitation is either a radial point force, of magnitude F0 , that

is located at the cylindrical coordinate Ca,0,0), or it is an interior
point source of sound, of free-field pressure p0exp(ik1 Ro)/Ro, that is

located at (xo,OO). The 'spectral' displacements are obtained, via

Novozhilov shell theory [2), as the solution of the matrix equation

S11 S12 S13  U(n,a) 0

S21 S22 S23  V(n,a) 0
(Al)

S31 S32 S3 3 P2w
2Hn(P2 a)/p 2H'( 2 a) Foen/2wa or

W(n,a)
-plw2j n (vja)/P1 ~a )  L 2Poenjn( lxo)/PlaJ(ljla)

where

S11 = Ej[a
2 n2 (l-o)/2a21 - hW2

S12 = -Ejicn(l+a)/2a

S13 = -Elima/a

S21 = -S12

S22 = E1[c
2 (1-a)/2 + n2/a2 + 2c 2 B2 (1-a) + 02n2/a2 ] - Phw2  (A2)sI

S23 = El[n/a2 + na 202 (2-a) + n382/a2 )

S31 = -S13

S32 = S23

S33 - E1i 1/a
2 * ct402a2 + 2n2u282 + n402/a2 ] - Pe 2 h

An axial point force excitation is obtained by setting the right-hand side

of the matrix equation to [F e n/2ea,0,O] T
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The Interior Spectral Pressure L 1]

The interior 'spectral' pressure is given by the formula

p I(r,n,) = p1 w2 [ Jn( jPr)/jiiJn(wia)] W(n,a) + A(n,t) (A3)

where A(n,) is identically zero for point force excitation, and

A(n,a) = -rpoe [J (11 xo)/J'(111 a)I [J r)Yn'(pia)-Y(lr)Jn(pla)], r>x0

(A4)

A(n,a) = wp0 en[n (P r)/J'(a ] [ Jn(11XO)Yn (11a)-Yn(i x0 )Jin(i a)] r<Xo

C A5)

for a point source excitation.

An alternative to equation (2.2) for the particular case of point
source excitation is

pl(r,O,z) = poexp(ikjRo)/Ro + (1/2n)n2 0 cos (nV)j b(r,nc)exp(iaz) ch

-0 (A6)

where

b(r,n,a) = n Jn(jr)/Jn (pi1a) [ w2 (n,a)/Pj -ffiPoenJn(PlXo)Hn(p a)

A7)

- 14-
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